Formulas for zonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zonal polynomials for wreath products

The pair of groups, symmetric group S2n and hyperoctohedral group Hn , form a Gelfand pair. The characteristic map is a mapping from the graded algebra generated by the zonal spherical functions of (S2n, Hn) into the ring of symmetric functions. The images of the zonal spherical functions under this map are called the zonal polynomials. A wreath product generalization of the Gelfand pair (S2n, ...

متن کامل

Factorization formulas for MacDonald polynomials

In [LLT1], Lascoux, Leclerc and Thibon give some factorisation formulas for Hall-Littlewood functions when the parameter q is specialized at roots of unity. They also give formulas in terms of cyclic characters of the symmetric group. In this article, we give a generalization of these specializations for different versions of the Macdonald polynomials and we obtain similar formulas in terms of ...

متن کامل

Splitting Formulas for Tutte Polynomials

We present two splitting formulas for calculating the Tutte polynomial of a matroid. The rst one is for a generalized parallel connection across a 3-point line of two matroids and the second one is applicable to a 3-sum of two matroids. An important tool used is the bipointed Tutte polynomial of a matroid, an extension of the pointed Tutte polynomial introduced by Thomas Brylawski in Bry71].

متن کامل

Dual combinatorics of zonal polynomials

In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments o...

متن کامل

On Combinatorial Formulas for Macdonald Polynomials

A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1984

ISSN: 0047-259X

DOI: 10.1016/0047-259x(84)90038-1